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The three-dimensional vortex flow that develops around a close-coupled canard-wing 
configuration is characterized by a strong interaction between the vortex generated at  
the canard and the aircraft wing. In this paper, a theoretical potential flow model is 
devised to uncover the basic structure of the pressure and velocity distributions on the 
wing surface. The wing is modelled as a semi-infinite lifting-surface set at zero angle of 
attack. It is assumed that the vortex is a straight vortex filament, with constant 
strength, and lying in the freestream direction. The vortex filament is considered to be 
orthogonal to the leading-edge, passing a certain height over the surface. An 
incompressible and steady potential flow formulation is created based on the three- 
dimensional Laplace's equation for the velocity potential. The boundary-value 
problem is solved analytically using Fourier transforms and the Wiener-Hopf 
technique. A closed-form solution for the velocity potential is determined, from which 
the velocity and pressure distributions on the surface and a vortex path correction are 
obtained. The model predicts an anti-symmetric pressure distribution along the span 
in region near the leading-edge, and a symmetric pressure distribution downstream 
from it. The theory also predicts no vertical displacement of the vortex, but a 
significant lateral displacement. A set of experiments is carried out to study the main 
features of the flow and to test the theoretical model above. The experimental results 
include helium-soap bubble and oil-surface flow pattern visualization, as well as 
pressure measurements. The comparison shows good agreement only for a weak 
interaction case, whereas for the case where the interaction is strong, secondary 
boundary-layer separation and vortex breakdown are observed to occur, mainly owing 
to the strong vortex-boundary layer interaction. In such a case the model does not agree 
well with the experiments. 

1. Introduction 
Vortex flows occur very often in aerodynamics when vortices are generated and 

remain in close proximity to the surface of an aircraft configuration. The local surface 
velocity and pressure distributions and the overall characteristics of the entire 
configuration are considerably affected by the interaction with these vortices. In 
general, the vortices produce an extra suction effect on the surface, which increases the 
lift coefficient up to higher angles of attack than without vortex flow. Typical examples 
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are the flow around delta wings and the flow around the forebody of a fighter aircraft 
(Hoeijmakers 1990). 

Interaction also occurs when the vortex wake of one component of the aircraft 
approaches other components, such as the flow around a helicopter blade (blade vortex 
interaction, BVI), a small aircraft following a large aircraft (wake vortex hazard), and 
the flow around a close-coupled canard-wing configuration. In the BVI case, vortices 
are shed continuously from the tips of helicopter blades and are convected downstream 
past the next approaching blades. Since helicopter blades are very thin and have a large 
aspect ratio, the pressure changes produced by the passage of the vortex may cause 
strong local loading changes on the blade. The vortex has a small core diameter and 
strength, and the blade has a small chord compared to the vortex height above the 
wing. In the wake vortex hazard situation, a small aircraft enters the wake generated 
by a large aircraft. The large aircraft produces large cored tip vortices with a high 
strength, which interact with the small aircraft wing, whose chord may be of the same 
order as the vortex core diameter and/or the vortex height. The small aircraft may 
undergo a strong rolling moment, creating conditions that overcome its control 
capability. In the case of a close-coupled canard-wing configuration, the streamwise 
vortex generated at the canard is convected downstream by the freestream and 
interacts with the wings. Since the wing has a large surface chord for the interaction 
to evolve, the vortex changes the pressure distribution that would exist on the wing 
surface if it were absent. The vortex strength and diameter, and the wing chord are 
larger than in the BVI case, and smaller than in the wake vortex hazard problem. This 
paper investigates the latter situation. 

Much theoretical and experimental work has been done for the BVI and wake vortex 
hazard problems, where the prediction of forces and moments on the surface are of 
primary interest. Owing to the lengthscales involved, linear, inviscid theories of the 
lifting-line type yield useful results, despite the important fact that they cannot predict 
any detailed loading variation, such as the chordwise distribution of the surface 
pressure. Many investigators have used this approach (see, e.g. Smith & Lazzeroni 
1960; Filotas 1971; Jones 1972; Barrows 1977; McMillan et al. 1978; Jung & Seath 
1988). A thorough literature review of these problems can be found in Bodstein (1993). 

Lifting-surface type theories have also been used, such as Silver (1966) and Hancock 
(1971). It is worth mentioning Hancock’s work, since he obtained results similar to 
ours with a different approach. Hancock modelled the BVI problem for a wing of finite 
chord and infinite span. An integral equation was solved for the vorticity distribution 
in the wing, which varies with both the chordwise and the streamwise coordinates and 
satisfies a linearized Kutta condition at the trailing-edge. Owing to the assumptions 
made, his solution is valid for small chord wings. Using some simplifying assumptions 
based on a lifting-line type of approximation Hancock assumes a classical series 
solution for the vorticity distribution in the plane of the wing. A power series is 
identified in terms of K (defined by equation (3) below) for the series coefficients, where 
the first and second terms give an anti-symmetric and a symmetric loading, respectively. 
Hancock’s theory was later compared to pressure measurements obtained by Patel & 
Hancock ( 1974) for a low-RejmoZds-nurnber flow. Some agreement was obtained 
between the data and the theory of Hancock for cases of weak interaction, although 
the ziortex strength was not measured (an estimated value was used). Patel & Hancock 
also performed flow visualization experiments and observed that vortex breakdown 
and secondary separation of the wing’s boundary layer occurred, for strong interaction 
cases. 

Numerical methods have also been applied to study the BVI problem, ranging from 
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surface-singularity panel methods (Maskew 1983) to finite-difference algorithms for 
the Euler equations (Srinivasan, Chyu & Steger 1981). These results present 
discrepancies when compared to experimental results, owing mainly to the limitations 
of the numerical models (Bodstein 1993). 

In addition to Patel & Hancock’s experiments, other experimental results can also 
be found (e.g. Smith & Lazzeroni 1960; Harvey & Perry 1971; Ham 1975; McMillan 
et al. 1978; McAllister & Tung 1984; Mehta & Lim 1984; Seath &Wilson 1986). These 
authors performed experiments to study either the BVI or the wake vortex hazard 
problems, in either water or wind tunnels, but all of them studied flows with a low 
Rqvnolds number (based on the surface chord). In summary, they observed that the 
interaction does affect the loading on the wing. For strong interactions secondary 
separation and vortex breakdown also occur, accompanied of a large lateral vortex 
displacement. 

The focus in this paper is on the study of the three-dimensional interaction of a 
streamwise vortex with a large-chord surface, which is typical of the flow around a 
close-coupled canard-wing configuration. When the canard and the wing have highly 
swept leading edges they generate vortices that co-exist on the top of the main wing 
(Hoeijmakers 1990). Since this flow is quite complex, we will picture here a physical 
situation where the wing is assumed to have a large chord and no sweep. The details 
of any vortex generation on the canard are of no importance, and the surface chord is 
large enough so that suction effects caused by the vortex on the surface are not 
negligible. 

The objective of this study is twofold: to develop a mathematical model that 
captures the main loading variation on the wing surface ; and to obtain experimental 
results that reveal the main features of the flow and the applicability of the model. Our 
experimental set-up covered flows with a larger wing surface chord and a higher 
Reynolds number than the ones found in the literature. In addition, we measured the 
z’ortex strength and Lielocity projiles in the vortex core, in contrast to previous papers 
on the subject. Preliminary results of our work can be found in Bodstein, George & Hui 
(1993). 

In $2 a theoretical potential flow model based on the three-dimensional Laplace’s 
equation is developed and solved analytically. Section 3 describes the set-up and the 
techniques that we used to study this flow experimentally. The theoretical and 
experimental results are compared in $4. Conclusions are drawn in $5 .  

2. Theoretical model 
2.1. Phjwical model 

A physical model of the problem is depicted in figure 1. Since the surface chord is 
considered to be very large, it is assumed that the leading-edge is far enough away from 
the trailing-edge such that effects caused by the leading and trailing-edges can be 
analysed separately, and the surface can be assumed to be semi-infinite in both cases. 
In this paper, only the leading-edge problem is considered. As shown in figure 1, the 
surface is assumed to be semi-infinite, with 0 < x < oci and - co < y < co, and to have 
zero thickness. It lies in the (s,y)-plane, for .x > 0, with zero incidence with respect to 
the free-stream direction. The free-stream speed, U,, is in the x-direction. The vortex 
is considered to be a straight vortex line of strength r, with its axis also in the free- 
stream direction and located at a height h above the surface centreline. The flow is 
three-dimensional and assumed to be steady, incompressible, inviscid and irrotational. 
Figure 1 also shows the Cartesian coordinate system used. 
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W X  

Surface ------------------ 
FIGURE 1. Model: a vortex of strength r at height h interacting with a semi-infinite surface. 

A second interpretation to this formulation is also possible. One may consider this 
model to yield a solution to the flow in the leading-edge region of any finite chord wing, 
with an infinite span. In this case, our model provides an asymptotic solution for small 
values of .Y, which can, theoretically, be matched to a solution for the trailing-edge 
region (still not known). The first view of the problem is the one adopted here, since 
our experimental results were obtained for large chord wings. 

2.2. Mathematical model 
The mathematical problem for a steady, incompressible, inviscid and irrotational flow 
consists of solving Laplace's equation for the velocity potential q5 subject to the 
impermeability condition on the surface and the condition that the velocity potential 
approaches the sum of the free-stream and the vortex velocity potentials at large 
distances away from the leading edge, in the negative x-direction. As x tends to positive 
infinity, the solution is expected to asymptotically approach the solution to the 
problem of a two-dimensional point-vortex over an infinite plane (Milne-Thompson 
1955). However, this is not a boundary condition, and must be verified a posteriori. 
Normalizing all the variables by U ,  and h, the following boundary-value problem can 
be set up 

VZ$ = 0, (1 a) 

(1b) 

$ + $,,+$m as s2+y2+z2-+ co for .Y < 0, (1 c> 

2 = o at z = o for x 3 0, 
az 

where 4% is the free-stream velocity potential and q5ty is the vortex velocity potential, 
which are given by 

9, = s, (2 4 

The dimensionless parameter K that appears in ( 2 6 )  is a measure of how strong the 
interaction is, and it is defined as 

F 

K ^ i  
27-t U ,  h' ( 3 )  

K can be interpreted as a ratio of the transverse velocity induced by the vortex to the 
free-stream velocity. It should be noted that h is the only lengthscale in the problem 
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and, therefore, effects of r and h, are all lumped into the definition of K. For r fixed, 
asymptotic limiting cases where h + 0 corresponds to the case where K +  a, whereas 
cases where h -+ IX corresponds to K + 0. The dependence of K on U ,  is expected to 
be very weak, since classical aerodynamics arguments can be used to show that K is 
independent of U,, for a given upstream wing geometry (Bodstein 1993). 

Generally speaking 11(1 < 1 in real flight. If i t  is assumed that Kis  a small parameter, 
so that 0 < K << 1, the solution for Q can be expanded as an asymptotic series given by 

(p = Qo+KQ,+K”Q,+.... (4) 

Substituting (4) into ( 1 )  and equating like powers of K, the following sequence of 
boundary-value problems can be set up 

V”” = 0, ( 5 4  

Q , z + O  a s . u 2 + j ” + z 2 - - t a  f o r s < O ,  (7 c)  

where IZ 3 2. The solution to ( 5 )  is Q,, = x, that is, a uniform flow. Because the solution 
of the boundary-value problem (7) must be unique, only the trivial solution Qn = 0 is 
admitted. Any eigensolution (sources, dipoles, etc.) placed on the (s, y)-plane does 
satisfy ( 7 a )  and (7c) ,  but it does not satisfy the boundary condition (7b)  since it blows 
up at the point where the singularity is placed. Singularities placed in the fluid region 
do not satisfy Laplace’s equation at their positions, and, therefore, all eigensolutions 
must be discarded. These results imply that the series (4) terminates at  n = 1, which 
produces an exact solution for Q given by 

Q = .u+K$&. (8) 

Equation (8) also implies that, from a purely mathematical point of view, we can relax 
the initial assumption that K is a small parameter, since the original problem can now 
be viewed as a superposition of solutions, that is, a sum of a uniform flow and a flow 
due to the vortex. Any restriction on how large K can be must be supported by a 
physical argument. For large values of K the flow separates on the surface, and the 
whole model breaks down. 

Turning our attention back to the boundary-value problem ( 6 )  we recognize that 
q5u is a solution to Laplace’s equation, which allows us to define a perturbation velocity 
potential, q ,  according to 

fT = 54 -$ tv  (9) 
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9'- 0 as s 2 + y 2 + z 3  -+ rx~ for .Y < 0. (lOc) 

The boundary-value problem (10) can be solved using the Fourier transform applied 
to s and y ,  and the Wiener-Hopf technique, since the boundary condition (lob) is valid 
only for positive values of x. The perturbation velocity potential Q' is 
continuous second derivatives everywhere in the fluid region, except 
line. Taking the Fourier transform of (10) with respect to y yields 

- = -insgn(A)eplAl = g(h )  
dz 

at z = 0 for .Y >, 0, 

f -+ 0 as s 2 + y 2 + z 2  + cx, 

where @ is the Fourier transform of Q-', defined as 

for .Y < 0, 

@(x, A, z )  = y(x, y ,  z) eP" dji .  s: 
The Fourier transform with respect to .Y reduces (1 1 )  to 

(0% + A 2 )  @ = 0, 
d2@ 
dz2 
__- 

- = H(W A )  
d@ 
dz 

a t z = O  for -7c 3 0, 

@ - t o  asx2+y'+z'-rxI f o r s < O ,  

which has the following solution 

required to have 
along the vortex 

(17a) 

The function @ is the Fourier transform of @ with respect to s, defined analogously as 
above. The boundary condition H(o, A )  can be determined using the Wiener-Hopf 
technique (Nobel 1958). Thus, evaluating (12b), we can write 
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The integral defined for s > 0 converges only for Im [w] < 0, producing a function 
that is analytic in some lower-half w-plane. Conversely, the integral defined for x < 0 
converges only where Im[w] > 0, generating a function W+(w,h) that is analytic in 
some upper-half w-plane. Since its integrand is unknown, W+(w, A )  must be determined 
as part of the solution. With ( 1  1 b) ,  equation (14) becomes 

where the ' + ' and ' - ' subscripts denote that the function is analytic in some upper- 
and lower-half o-planes, respectively. These domains of analyticity will be determined 
below. The function in square brackets is the Fourier transform of the unit step 
function, which exists only if defined in some lower-half w-plane. This is consistent with 
the introduction of s, for 0 < e < I ,  which displaces the pole from the real axis to the 
upper-half plane of w and includes the real axis in the Wiener-Hopf strip of analyticity 
where the inversion process must be performed (Carrier, Krook & Pearson 1983). The 
limit as e + 0 must be taken after the inversion procedure is completed. 

From physical grounds we expect @(w, A, z )  to be continuous at z = 0, for .Y < 0, and 
discontinuous at z = 0, for s > 0, since the surface is modelled as a vortex sheet in the 
flow. Mathematically, the surface must be a branch cut in the domain. Indeed, it can 
be inferred from (1 3 )  that the jump in @(w, A, z )  across the plane z = 0, for .'c < 0, is 
zero, and the jump in @(w, A, z) ,  for x > 0, is given by 

This equation defines a function F(w,h),  which is analytic in some lower-half w-plane. 
Equation (16) can, now, be substituted into (15) to produce a Wiener-Hopf equation 
in o, 

The equation above has a pole at is and two branch points, at ih and -in. The 
Fourier transform variable h can be positive or negative and the Wiener-Hopf 
equation turns out to have the same form if h is replaced by IAl in (17). So, the square- 
root term in the equation above can be written as ( ( w  - ilhl)(o + ilhl))1/2, and the branch 
cuts must be chosen such that Re[((w-ilhl)(o+ilh1))1'2] > 0, which is the condition 
for the convergence at infinity of the exponential term in the solution (1 3 ) .  The branch 
cuts extend from filhl to f i m ,  respectively. Noting that this square-root term is a 
product of a ' + ' and a ' - ' function, the Wiener-Hopf equation can be rearranged as 
follows 

(18) 

In equation (18), the left-hand side is analytic in some lower-half w-plane, whereas 
the second term on the right-hand side is analytic in some upper-half w-plane. The 
remaining term is analytic in the strip of analyticity between the pole at is and the 
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branch point at - i /Al .  Thus, it can be split into a sum of a ‘ + ’ and a ‘ - ’ function, 
so that the Wiener-Hopf equation becomes 

where M+(w, A )  and M-(w,  A )  are given by 

The term on the left-hand side of (19) is the analytic continuation of the term on the 
right-hand side (and vice versa), and together they define an entire function E(w, A). In 
order to determine E(w,A) ,  a Wiener-Hopf argument must be used, that is, the 
behaviour of the two sides of (19) near the leading edge must be examined. In the 
complex w-plane the behaviour of U’,(w,A) and El (w ,A)  near the leading edge are 
determined by their behaviour as o -+ co. At x = 0 we expect a singularity to exist in 
the vertical component of the perturbation velocity field. Since this singularity in thin 
wing theory is a square-root singularity we assume the same to occur here. Thus, if 
@&A,z = 0) behaves as l / . P  as the leading edge is approached from the left, it is 
integrable there, and W+(o, A )  - 1/w”’ as w + GO. Consequently, W+(w, A )  -+ 0 as 
IwJ + co, in the region Im[w] > - / A ) .  By the same reasoning, a square-root singu- 
larity should also occur in the s-component of the perturbation velocity field. If this 
assumption is true, we anticipate that @(s, A, z = 0) - x112 near the leading edge, and, 
therefore, it is bounded at x = 0. For this reason, El(o,, A )  - l / ~ “ / ~  at the leading edge 
and w F ( w ,  A )  is integrable as IwI -+ co, in the region Im [w] < E .  So, F ( w ,  A )  --* 0 as 
101 -+ 00, and each side of (19) tends to zero as 1m1 --f CCI in its domain of definition. 
Using Liouville’s theorem (Carrier et al. 1983), E(w, A)  must be identically zero, and 
F ( w , A )  and W+(w,A) are found to be 

W+(o,, A )  = - 

with M+(w, A )  and M-(w, A )  given by (20). From (21) it can be seen that the lower-half 
plane of analyticity of F ( w ,  A )  is Im [w] < e, and the upper-half plane of analyticity of 
W+(w, A )  is Im [w]  > - JAJ. The overlapping region defines the strip of analyticity where 
the inversion process in the o-plane must be performed. Equations (21) also indicate 
that the asymptotic behaviour of F(o,  A )  and W+(o, A), as w --t co, are correct. 

Substituting (21 b)  into (15), or (21 a )  into (16), the boundary condition H(w, A )  can 
be obtained. Using this result in (1 3 ) ,  the solution in the two-dimensional Fourier space 
( w , h )  is 

exp ( -  lA l )  exp ( - Iz( ( w 2  + A2)1/2) 
(ie+i(h1)1/2 (o-ie)(w-ilAl)l/z ’ 

@(w,  A, z )  = x sgn(z) sgn ( A )  . 

where the definition of g(A), equation (1 1 b), was used in (22). 
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From the Fourier inversion formula, the solution in the physical space can be written 
as 

x exp (iwx) dw dh. (23) 

Performing a contour integration on the innermost integral of (23) along the real axis 
in the o-plane, expanding the outermost integral, and taking the limit as e - 0 ,  we 
obtain 

sin ( h y )  e-' 

(246) 

Equations (24) comprise the solution to the boundary-value problem (10). In 
particular, on the plane 2 = 0, equations (24) can be integrated analytically to give the 
perturbation velocity potential on the surface 

Equation (25) shows that the surface is indeed a branch cut in the domain of 
definition of ql(x,y, z). An asymptotic expansion of (Z), for small values of x, indicates 
that the assumption of boundedness of ~ ( x ,  y, z = 0), as x + 0, is correct. 

2.3. Velocitj? and pressureJields on the surface 

Analysis of the velocity field brings up some interesting aspects of the solution. The 
perturbation velocity components in the (x,y)-plane, for x > 0, calculated from (25) ,  
are 

Equations (26) can be used to interpret our solution as a continuous distribution of 
horseshoe vortices placed on the surface. In this case the bound and trailing vortices, 
respectively, are 
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The perturbation velocity components for x < 0 are obtained from the general 
solution for 71, equation (24h). Taking the derivative with respect to x, y and 2, and 
setting ,- = 0, yields 

aql , .(-x,y,z = 0 )  = -(. x,j’,,- = 0 )  = 0 
C’.X (3-V 

for x < 0, (27 a, b )  3 

Equations (270) and (27b)  show a remarkable result: the x -  and y-velocity components 
in the plane z = 0, for x < 0, are zero. The first term in (27c) corresponds to the 
velocity induced by the vortex, whereas the second has a square-root singularity at the 
leading edge. 

Performing an asymptotic analysis of the velocity components above, more 
information on the solution can be obtained. First, expanding equations (26) for small 
values of .Y yields 

Equations (28) show that, as .x --f Of, the perturbation velocity component in the x- 
direction is anti-symmetric in 1’ and has the expected square-root singularity at x = 0. 
On the other hand, the component in the y-direction is symmetric in y and is 
continuous at .x = 0. The component in the ,--direction, as s approaches zero from the 
left, can be obtained from (27c), 

which indicates the existence of an integrable square-root singularity at x = 0. This 
again confirms the integrability assumption of pz at the surface’s leading-edge used in 
the Wiener-Hopf argument. In addition, (29) shows an anti-symmetric behaviour of 
p,(x, y, 2 = 0) with respect to y, basically owing to the vortex downwash. 

The behaviour of the perturbation velocity components as .x --f rn is also of interest. 
Expanding (26) for large values of .x yields 

Equation (30a)  shows 
remains. Furthermore. 

that the x-component decays very fast at infinity, and just U ,  
, using (306) and the boundary condition (lob), the total velocity 

components on the top of the surface in the y- and =-directions converge to 
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FIGURE 2. -C, on the top and bottom of the surface for K = 0.089. 

Equations (3 1) constitute the solution to the two-dimensional point-vortex/infinite- 
plane problem (Milne-Thompson 1955), showing that our solution is asymptotically 
correct. As .Y -+ - m, the perturbation velocity component in the z-direction tends to 
zero at a rate of the order of ] X I - ' ,  which is expected because just the vortex velocity 
potential remains non-zero far upstream of the leading edge. 

The pressure distribution is obtained from Bernoulli's equation, written as 

where 

The perturbation velocity components on the surface are given by equations (261, and 
#+,from (2b) .  Typical graphs of the pressure distributions on the top and bottom of the 
surface are shown in figure 2, for K = 0.089. This value of Kis encountered in real flight 
for weak interactions, and was used in our experiments. First, we consider - C, at a 
chordwise station near the leading edge of the surface. Both distributions possess an 
anti-symmetric behaviour with respect to the spanwise coordinate, which is due to the 
vortex downwash. On the top surface the flow hits the surface on one side of the vortex 
and increases the pressure, whereas, on the other side, the flow moves away from the 
surface, decreasing the pressure. The opposite effect occurs on the bottom surface. The 
pressure distributions at a chordwise station far downstream from the leading edge are 
also shown in figure 2. It shows an approximately symmetric behaviour on the top 
surface and an anti-symmetric behaviour on the bottom surface. On the top, the vortex 
generates a suction peak, since the fluid rotating around the vortex is accelerated to 
pass in the gap between the vortex and the impermeable surface, decreasing the 
pressure. Beyond the line just underneath the vortex, the flow decelerates, increasing 
the pressure again. In this region, the flow is locally two-dimensional. This suction 
effect is responsible for the generation of lift due entirely to the vortex. On the bottom 
surface the fluid starts to 'forget' the existence of the vortex as the flow progresses 
downstream, and the anti-symmetric effect present near the leading-edge still persists, 
although decaying rapidly. The symmetric and anti-symmetric components of the 
pressure distribution were also obtained by Hancock (1971), in his model of the flow 
around a helicopter blade. 
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The asymptotic expansions for the velocity components can be used in (32). For 
large values of x, equations (30) yield 

for the first two terms. On the top of the surface the first term of (33) dominates. The 
pressure distribution in this case is symmetric in y and proportional to K2. On the 
bottom of the surface, the first term vanishes and the second term dominates, which 
is proportional to K and anti-symmetric in y, as shown in figure 2. For small values of 
x, the pressure coefficient behaves as 

The first term on the right-hand side of (34) has a non-integrable singularity at x = 0 
and is proportional to K2. The second term is proportional to K and has an integrable 
square-root singularity at .x = 0. In regions near (but not very close to) the leading 
edge, the second term in (34) will dominate, and the pressure distribution becomes anti- 
symmetric in y and proportional to K,  as shown in figure 2. However, in regions very 
close to the leading edge, the first term is dominant. In a real flow, under moderate 
flight conditions, usually lKl < 1. Since the first term in (34) is proportional to K2, it 
will be important only for very small values of s, where the adverse pressure gradient 
in the x-direction imposed by this first term behaves as xP. In this narrow region 
(0 < x + l) ,  this pressure gradient is likely to cause a local separation bubble to occur 
near the leading edge, and the present model is no longer valid. If K is very large, the 
entire model is likely to break down owing to three-dimensional boundary-layer 
separation on the surface. This region, where this singular term is important, is strongly 
dominated by viscosity. Separation at the leading edge is observed to occur in our 
experiments ($4). Furthermore, the assumption that the leading edge is sharp is, in fact, 
a major source of difficulties. Theoretically, it should be possible to remove this 
singular behaviour by adding a round nose to the surface. The same type of singularity 
was observed to occur in thin airfoil theory, where spurious singularities arise at 
stagnation points (Van Dyke 1956). A first-order solution in an asymptotic expansion 
in terms of a thickness parameter presents a square-root singularity at the leading edge, 
whereas a second-order solution shows the appearance of a l/x-type of singularity at 
the same point. The problem was resolved by straining the coordinates near the edge, 
and matching it with the thin airfoil theory solution (see also Van Dyke 1975). A last 
point on this issue is the fact that a non-integrable singularity of this type implies that 
an infinite force will act on the surface. However, it should be noted that if C, 
integrates to an infinite force on the top of the surface, it also integrates to an infinite 
force on the bottom of the surface. Thus, there is no net contribution to ACp, the 
pressure coefficient differential, defined as AC,, = C;- Ci. In fact, from (32), AC, is 
given by 

It follows that the behaviour of AC,, near the leading edge is proportional to K, anti- 
symmetric in y ,  and has an integrable square-root singularity near the leading edge. 
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FIGURE 3 .  Variation of the pressure coefficient differential per unit chord 
along the chordwise direction. 

This loading generates bending and rolling moments on the surface. Far downstream 
from the leading edge (as x -+ co) AC, is symmetric in y and is proportional to K 2 ,  
which indicates that the higher the value of K, the larger the vortex-induced lift 
coefficient will be. 

Equation (35) can be integrated in the spanwise coordinate to give the pressure 
coefficient differential (or lift coefficient) per unit chord, q ( . x ) ,  owing to the 
interaction with the vortex. The first term of (35) vanishes because of its anti-symmetry 
in y ,  and just the second term contributes. Integrating numerically, this term yields the 
curve shown in figure 3. As x + co, the value of q ( . u ) / 4 K 2  tends asymptotically to 
fn. Thus, q ( . x )  - 2zP,  as s + co, which can be considered an upper bound to the 
amount of lift per unit chord obtained. 

The presence of a trailing-edge on a finite-chord wing implies that the Kutta 
condition must be satisfied. In other words, the pressure field must be continuous 
across the trailing edge. This condition requires that ACp is zero at the trailing edge. 
Therefore, q ( s ) / 4 K 2  must reach a maximum on the wing surface, which cannot be 
greater than in, and decay to zero at the trailing edge. Hancock's model captured this 
behaviour. However, the values of Ci and C; at the trailing edge do not need to be 
necessarily zero. In fact, they can even present a spanwise variation, as long as they are 
equal. Their values depend on the trailing-edge geometry. A solution for the trailing- 
edge region analogous to this one for the leading-edge region is still to be obtained. 

In summary, this model reveals the asymptotic structure of the pressure distribution 
over most of the surface of a large-chord wing owing to its interaction with a 
streamwise vortex. Two of its applicabilities can be point out. First, the solution 
obtained here can be used to calculate the three-dimensional flow in the boundary layer 
of the wing, and its associated topology. Secondly, the potential flow solution itself 
shows that the associated increase in lift on the wing owing to the vortex depends on 
the square of K. This solution can theoretically be matched, via the method of 
asymptotic expansion, to an analogous solution to the trailing-edge region, which is 
not known. The matched solution will, in principle, provide the best potential flow 
solution to the problem. The analytical or numerical solutions obtained by Silver 
(1967), Maskew (1983) and the others mentioned in the introduction are all based on 
a distribution of surface singularities, and they are potential flow solutions such as the 
one presented here. However, they were applied to helicopter blades, and did not 
captured the K2-term. For helicopters and for the wake hazard problem the K-term is 
the one that generates bending or rolling moments on the wing, which are the main 
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FIGURE 4. Boundary between the symmetric and anti-symmetric pressure distributions. 

loads. Nevertheless, for a close-coupled canard-wing configuration, the flow feature of 
main interest is the extra lift caused by the vortex. Only Hancock (1971) found both 
terms, but his solution presents some simplifying assumptions well-suited for helicopter 
blades. 

2.4. Boundary between symmetric and anti-symmetric efSects 
A question that arises from the pressure distribution behaviour is where the boundary 
between symmetric and anti-symmetric effects is. Here, this boundary will arbitrarily 
be defined as the position on the surface along the chordwise direction where the 
maximum value of the anti-symmetric effect with respect to the spanwise coordinate is 
equal to the maximum of the symmetric effect. In other words, a solution xb(K) is 
sought to the equation 

(36) 
where ymaz(x)  is the point where each function has a maximum (in absolute value), and 
A,,, and S,,, are the maximum values of the anti-symmetric and the symmetric 
distributions, respectively. 

From (35) for the pressure coefficient differential, the maximum for the first term 
(anti-symmetric) occurs at ymaz(x) = 43(1 +x),  and the maximum for the second term 
(symmetric) occurs at y,,,(x) = 0. Hence, calculating the maximum values of each 
function and equating them, an equation of the type of (36) is obtained, which has the 
following solution 

A,,,(K X , Y m a z ( X ) )  = S,,,(K X , Y r n a x ( 4 L  

- 
1 1  

X b  = -- 
22/2 K' (37) 

For the pressure coefficient on the top of the surface the same procedure is used. 
However, the term (aq~ /ax )~  in (32) was neglected based on the same argument used 
before to analyse (34). The equation obtained is a second-order algebraic equation in 
xb, and its solution is 

X b  161/2K+2)l/' . (38) 1 
Equations (37) and (38) are plotted in figure 4. They provide an approximation for 

the chordwise position where a smooth transition from an anti-symmetric loading 
changes into a symmetric one on the surface of a large-chord wing. This boundary is 
important because the characteristics of the pressure gradient on the surface are 
different in these two regions, which has implications on the boundary-layer topology 
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on the wing surface. The symmetric loading, for example, determines whether spanwise 
separation and second vortex formation are expected to occur. A finite-chord wing will 
have the boundary between these two types of loading moved upstream, for a fixed 
value of K, since the pressure field will change in a region near the trailing edge (as 
discussed in the previous section). 

2.5. Vortex path 
So far the vortex has been assumed to be a straight vortex filament. In the real flow the 
vortex is expected to curve owing to the presence of the wing surface nearby. This effect 
can be interpreted in ways. We can regard the wing surface as a vortex sheet. In this 
case the bound and trailing vortices induce a velocity field on the original vortex that 
displaces it in order for the vortex to follow a streamline of the flow. We can also 
interpret this displacement effect as being generated by an ‘image vortex ’ situated 
below the surface, such that the impermeability boundary condition is satisfied on the 
surface. Either way, induced velocities in the free-stream direction will tend to stretch 
the vortex filament, whereas sidewash and downwash velocities will tilt the vortex with 
respect to the free-stream direction. The stretching effect is not accounted for in this 
analysis because the vortex is modelled as a filament. 

The vortex path can be estimated by ensuring that the vortex follows a streamline. 
The lateral and vertical displacements are calculated upon integration along the vortex 
line (the x-direction) of the equations that define a family of streamlines, which yields 

In (39) ‘ i u ’  denotes induced at the vortex location and ‘vo’ denotes evaluation at the 
vortex initial position, i.e. (x, y,,, = 0, zuo = 1). The integrands of (39), evaluated from 
(24), are 

Yiu,(X,Yv, = 0, zvo = 1) for x < 0, 

(x = O,y , ,  = O,z,, = l)+~Kx+yivp(x,yvo = O,zv, = 1) fo rx  > 0, 

where ziv = z +o  = 1, uo 

yiu,(x,y 710 = 0,z  VO = 1) 3- e?” dy dh, 
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Equations (41) were integrated numerically using the subroutines of Press et al. 
(1989). The lateral vortex displacement is shown in figure 5 ,  for K = 0.089. It can be 
seen that the vortex curves only in a region near the leading edge, and, as x -+ - co, the 
presence of the plate is not felt by the vortex. Downstream from the leading edge only 
the ‘two-dimensional image effect’ survives, and the vortex follows approximately a 
straight line with slope ;K (see equation (40a)). Equation (40b) indicates that the 
vertical vortex displacement is zero, to the degree of approximation used here, and it 
remains at its original height above the surface. 

This calculation was performed assuming that the original vortex path is a straight 
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FIGURE 5. Theoretical vortex path for K = 0.089. 

line. However, the model accuracy can be improved if the vortex path computed above 
is used to solve the problem again. A new pressure distribution and a new vortex path 
would be obtained, and an iterative procedure could be established. This scheme would 
be necessary only from an analytical point of view. The boundary condition (lob) is 
related to the vortex path. Since it is not known beforehand, it needs to be guessed. 
Thus, by solving the problem analytically a second time, the path of figure 5 would 
furnish a more accurate boundary condition. This new solution, however, is not 
expected to differ very much from the solution obtained here, since the comparison 
with experimental results, discussed in $4, shows good agreement. 

A final consideration about the vortex-path results concerns a finite-chord wing. The 
continuous growth of the lateral vortex displacement, shown in figure 5 ,  is a 
consequence of the lack of a trailing edge in the model. In a real flow, there will be a 
transition from the straight line with slope :K (above the surface) to an approximately 
straight line with zero slope downstream from the trailing edge. This is expected to 
happen because, far upstream and far downstream from the edges, a finite chord wing 
will have a small effect on the vortex curvature. Since the vortex must follow a 
streamline, it must align with the uniform flow. Just a lateral displacement between the 
vortex positions far upstream and far downstream will exist. 

3. Experimental set-up 
A number of experiments were conducted in the Cornell Environmental wind tunnel, 

including pressure and velocity measurements, helium-soap bubble flow visualization 
and oil-surface flow pattern visualization. In this section, a summary of the 
experimental procedure and set-up will be presented. More details can be found in 
Bodstein (1993). 

The experimental set-up consists of a wing and a flat plate placed in the test section 
of the wind tunnel. It is a suction tunnel with an open circuit and a rectangular cross- 
section (1.092 m high and 1.219 m wide), whose maximum speed is about 30 m s-'. The 
flow is uniform within 3 % and the turbulence intensity is about 0.9 YO in the potential 
flow core. A general side-view sketch of the test section and the experimental set-up is 
shown in figure 6. A vortex is generated by a rectangular wing placed vertically along 
the centreline of the test section. The wing section profile is NACA 0012, with a 
0.185 m long chord and a 0.920 m long span. The wing's angle of attack and span 
(immersed in test section) are allowed to change, in order to vary the vortex strength 
and height. 
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FIGURE 6. Schematic side view of the test section and the experimental set-up. 
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A plywood flat plate was placed horizontally in the test section, 5.5 wing chord 
lengths downstream of the wing. The plate spans the entire wind-tunnel width, and is 
0.023 m thick and 1.346 m long. It was mounted 0.320 m above the wind-tunnel floor, 
well above the tunnel boundary layer. Its leading edge was rounded to minimize flow 
separation. The plate has 114 pressure taps placed along its spanwise direction, and 
distributed over five different chordwise stations located at 0.041 m, 0.187 m, 0.491 m, 
0.797 m, 1.102 m (from the leading edge). The taps allow pressure measurements to be 
taken on the upper surface of the plate. 

Pressure measurements were obtained by connecting the pressure taps to a data 
acquisition system. The pressure taps were hooked up with plastic tubing to the input 
ports of a scanivalve. The scanivalve used has two 24-port wafers, model W0602/1P- 
24T. The reference ports were connected to the static port of a Pitot-static tube, placed 
upstream in the wind tunnel, which provides the value of the free-stream speed. A 
Scanivalve CTLRl OP/S2-S6 controller commands a solenoid, model WS5-25, which, 
in turn, drives the wafers. The scanivalve output ports were hooked up to two Omega 
PX-163 005BD5V pressure transducers, which send the output voltage to a Macintosh 
IIsi microcomputer. A National Instruments NB-MIO-16 data acquisition board is 
used for acquiring the data. Experimental data is taken using two channels, one for 
each pressure transducer. Measurements were taken at a sampling rate of 75 samples 
per second, for 20 s. 

Velocity measurements were performed in the vortex flow field in order to determine 
the vortex strength (or circulation) and the velocity profile in the vortex core. 
Measurements were taken using a two-channel constant-temperature thermal hot-wire 
anemometer, model TSI 1047, with a TSI two-component x -wire probe, model 1241. 
Mounted on a stepper motor-controlled two-component traverse the probe was 
aligned with the mean flow, and the measurements were taken in the (y,z)-plane that 
intercepts the plate’s leading edge (see figure 6). Horizontal and vertical traverses 
across the flow were performed with the plate removed from the test section during the 
velocity measurements. The grid used for all the velocity measurements has 33 points 
per traverse in the y- and z-directions, with a mesh size of 0.005 m and a sampling rate 
of 200 samples per second, lOs, for each grid point. The conversion from the 
anemometer’s output voltage to effective cooling velocity was carried out using King’s 
law, and the velocity components were determined following the procedure described 
by Fingerson, in chapter 4 of Goldstein (1983). The vortex strength, r, was calculated 
by numerically integrating the velocity field along the contour C, also shown in 
figure 6. 

To visualize the vortex as helium-soap bubble flow experiment was performed using 
a Phulti-head bubble generator. The neutrally buoyant helium-soap bubbles were 
injected into the test section, in a region near the wing tip, and were visualized by 
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illuminating them from downstream of the test section. Several photographs were 
taken for different flow conditions. This experiment was also used to measure the actual 
&stance h between the vortex and the plate, since the vortex tends to move UpW ald 
owing to the presence of the plate and the rolling-up process of the wake at the wing 
tip. 

Oil-surface flow pattern visualization experiments were carried out using a mixture 
of kerosene and lampblack, following the procedure described in Maltby & Keating 
(1962). The experiments were performed on a second plate model, built to preserve the 
pressure taps of the original model. In order to aid in the analysis of the boundary- 
layer topology on the surface, the locations of the separation and reattachment lines 
observed for some cases studied were measured with respect to the wind-tunnel walls, 
allowing a correspondence of the topology on the plate to the pressure measurements 
to be performed. 

An uncertainty analysis was carried out for all the physical quantities measured in 
the experiments. The maximum uncertainty values obtained, for 95 % coverage, were: 
Ah = 3 mm, AUm = 0.01 m s-l, A r  = 0.09 m2 SKI, A K  = 0.003, A C p  = 0.0007 (for 
some points near the suction peak ACp = 0.002). 

4. Comparison between theoretical and experimental results 
Two representative cases will be used to test the theory of 32. The test conditions are 

shown in table 1, with the interaction between the vortex and the plate becoming 
stronger as h decreases, or K increases, from case 1 to 2. The first column defines each 
case, and the next three columns contain the experimental values of the vortex strength, 
vortex height and free-stream speed, respectively. The remaining two columns show the 
corresponding values of the dimensionless vortex strength, K, and the Reynolds 
number based on the plate chord, Repe. In both cases studied the boundary layer on 
the plate is turbulent. If it is assumed that the boundary layer is two dimensional and 
the transition from a laminar to a turbulent flow occurs at a Reynolds number of lo5, 
the point of transition would occur 53 mm downstream of the plate’s leading-edge, i.e. 
near the first row of pressure taps. 

4.1. Velocity measurements 

For completeness we present in this section horizontal and vertical velocity traverses 
across the vortex core. Although our model does not account for core effects, these 
results may be useful to validate future numerical simulations of this problem. Axial 
and circumferential velocity profiles are shown in figure 7, for r = 2.72 m2 s-l. The 
velocity components were normalized by the free-stream velocity, and the y-  and z- 
coordinates by the vortex core diameter. The vortex core diameter was defined as the 
length of the region between the maximum absolute values of the circumferential 
velocity component. According to this definition, the core diameter, d,, was found to 
be 30 mm. The Reynolds number based on the wing chord is 3.5 x lo5. 

Inspection of figure 7(a )  shows some important features of the vortex. First, the axial 
velocity profile is jet-like, with the velocity in the vortex core reaching a value at the 
centreline 1.5 times higher than in the potential flow. Batchelor (1964) developed a 
theoretical model for the velocity field of a trailing vortex far downstream of a wing 
and found a wake-like axial velocity distribution. Hall (1964) discussed Batchelor’s 
solution and pointed out that the effect of the swirl is to cause a wake-like distribution 
to develop even if the axial velocity is initially jet-like. In fact, a recent study of the 
near-field of a wing-tip vortex carried out by Chow, Zilliac & Bradshaw (1993) reports 
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FIGURE 7 .  0, Axial and 0, circumferential velocity components across the vortex core: 

r = 2.72 m2 s-l. (a)  Horizontal traverse; (h )  vertical traverse. 

r h (fr 

(mz s-’) (mm) ( m  s-I) K RePC 
Case 1 2.72 162 30.10 0.089 2.53 x lo6 
Case 2 2.71 20 29.90 0.720 2 . 5 2 ~  lo6 

TABLE I .  Cases studied. 

axial velocities in the core as high as 1.8U, at the centreline, at a location x/c,, = 1.42 
behind the wing, where c,, is the wing chord. In figure 7 the measurements were made 
at x/c , ,  = 5.5, still in the near field of the vortex, to simulate a close-coupled canard- 
wing configuration. 

Further observation of figure 7 ( a )  indicates that the vortex is still not fully 
developed. The circumferential velocity profile shows a slight lack of symmetry along 
the radial direction. Near the point of maximum velocity, on the left-hand side of the 
vortex centreline, the velocity distribution is sharper than on the other side. Inspection 
of figure 7 ( b )  shows that both the axial and the circumferential velocities are smoother 
and more symmetric than in figure 7 (a) .  The velocity profiles are, therefore, dependent 
upon the angle around the vortex centreline. 

4.2. Heliuni-soap bubble flow1 uisualization 
Figure 8 shows photographs of the flow visualization experiment using the helium- 
bubble technique, taken, however, at a lower free-stream speed (7.00 m s-l) than in the 
other experiments. They are side-view pictures, with the mean flow moving from left 
to right. As described in $ 3 ,  the bubbles were injected in the free-stream near the wing 
tip, which cannot be seen in the pictures. The vortex, part of its wake, and the upper 
surface of the plate were illuminated from downstream of the test section. The vertical 
bar in the middle of the pictures is the frame of the test section lateral door. When viewed 
from downstream, the vortex is rotating in a counterclockwise direction. Figures 8 ( a )  
and 8(b )  correspond to cases 1 and 2, respectively. Figure 8(c) corresponds to the same 
case as figure 8 (b ) ,  viewed from a different angle. 

The first case considered, figure 8(a), represents the weak interaction case. It shows 
a steady vortex passing over the plate. There is no direct contact between the vortex 
cog and the plate’s boundary layer. Some bubbles, released in the wing wake, follow 
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FIGURE 8. Results of the helium-soap bubble flow visualization experiment for cases 1 and 2 
( a )  Case 1 ; ( h )  case 2 ;  (c) case 2 :  occurrence of vortex breakdown. 

clearly a helical-like path around the core. The vortex path is very nearly rectilinear, 
indicating that the presence of the plate does not disturb the vortex in the vertical 
plane, as predicted by (40b). Mehta & Lim (1984) also found in their experiments, 
carried out for a low Reynolds number and a small-chord wing, that the vortex takes 
the no-vortex streamline trajectory (for weak interaction cases). Figures 8 ( a )  and 8 ( b )  
corroborate this observation, even for different flow conditions. The flow in such cases 
is essentially inviscid. 

For the strong interaction case, depicted in figure 8(h), the vortex seems to be in 
direct contact with the boundary layer, and viscous effects become important. Even in 
this case, the vortex vertical displacement is very small when it is passing above the 
wing. It is, however, non-negligible in the region between the wing and the leading edge 
of the plate. Near the leading edge, the vortex curves to avoid intercepting the plate, and 
only part of the core appears in the field of view. This effect may be attributed to the 
presence of the plate and the rolling-up process of the wing wake that forms the vortex. 
Figure 8 ( h )  also shows some bubbles being ejected from the boundary layer, mainly in 
the region approaching the trailing edge of the plate. The core thickens as the vortex 
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FIGURE 9. Results for the oil-surface flow pattern experiment. 

passes over the plate, along the free stream direction. This effect is in part due to 
viscous interaction between the core and the boundary layer. It is also due to core 
instability. 

Figure 8(c )  also shows case 2, viewed from a different angle. Owing to the shorter 
exposure time used to take this picture, it is possible to see more clearly what is 
happening in the core: the occurrence of vortex breakdown. Good reviews of the 
vortex breakdown phenomenon can be found in Leibovich (1978) and Hall (1972). 
McAllister & Tung ( 1984) observed vortex instability in their experiments using 
hydrogen bubbles in a water tank. Patel & Hancock ( 1974), using smoke visualization, 
also observed vortex breakdown to occur. In both experiments the vortex breaks down 
at a position about half-chord above the wing, when the vortex passes very close to the 
surface. An estimate of the breakdown point based on figures 8(b)  and 8(c)  indicate 
that the breakdown point occurs at  a free-stream position about a third of the chord 
downstream from the leading edge of the plate. It is also important to note that figure 
8(c) shows the occurrence of the spiral type of vortex breakdown, which is the one 
observed in Patel 22 Hancock's experiments. Garg & Leibovich (1979) identified this 
type of vortex breakdown as the weakest form. The strongest form, the bubble type, 
produces a more violent core expansion and higher turbulence levels in the region 
downstream from the breakdown point. The flow conditions in figures 8(b )  and 8(c)  
are apparently not strong enough to generate the bubble form. 

4.3. Oil-surface flow pattern visualization 

A selected result of the oil-surface flow pattern experiment is shown in figure 9 for case 
2. The flow is moving from the bottom to the top of each picture. The vortex is rotating 
clockwise when seen from the camera's position, so that the right-hand side of the 
picture is the downgoing side of the flow. Although not shown here (see Bodstein 1993) 
tests were performed for case 1 and for the flow without the vortex, in order to assess 
the flow pattern on the upper surface of the plate. When the vortex is not present a 
small laminar separation bubble was observed to uniformly span the entire leading 
edge of the plate, followed by straight streamlines. This separation bubble was 
unsteady, indicating a turbulent reattachment localized close to the first row of 
pressure taps. For case 1,  where the vortex is passing at  a large distance over the plate, 
the streamlines on the surface of the plate were observed to be almost undisturbed 
by the presence of the vortex. Even though the separation bubble still exists over most 
of the leading edge, it was locally eliminated on the downgoing side of the vortex, 
near the centreline of the plate. The flow brings the stagnation line toward the upper 
surface of the plate and decreases the pressure gradient, which suppresses the occurrence 
of separation in that region and locally reduces the size of the separation bubble. 
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FIGURE 10. Conjectured front view schematic of the flow topology for case 2. 

Trailing-edge 
R2 S2 RI 

Leading-edge 

FIGURE 1 1. Leading-edge topology for case 2, N, node; S, saddle; R1, primary reattachment line; 
R3, secondary reattachment line ; S2, secondary separation line. 

For case 2, shown in figure 9, the strongest interaction takes place. It is likely that 
the vortex core is in direct contact with the plate's boundary layer, as pointed out in 
the previous section. The separation line starts to form at the leading edge, an extends 
over the entire upper surface of the plate. Near the trailing edge, along the fifth row of 
pressure taps, the separation line is displaced laterally by a large amount. This is 
evidence of a large vortex sideways movement. The interaction is so strong that the 
lampblack-kerosene mixture accumulates on the separated side of the line. Even 
though none of the flow-visualization techniques employed here were able to determine 
precisely the formation of a secondary vortex, the accumulation of mixture along the 
separation line strongly suggests that. This conjecture is supported by the herring-bone 
pattern built up between the separation and the secondary reattachment lines. The 
streamlines diverge from the reattachment line and converge toward the separation 
line, forming a herring-bone pattern. This pattern is characteristic of a flow that springs 
from the separation line to form a secondary vortex above the plate rotating in the 
opposite direction to the main vortex. Figure 9 also shows a secondary reattachment 
line on the left of the separation line (upgoing flow), and a primary reattachment line 
on the right (downgoing flow) formed owing to the main vortex. A conjectured sketch 
of the flow topology near the trailing edge is depicted in figure 10, where R 1 stands for 
primary reattachment line, R2 for secondary reattachment line, and S2 for secondary 
separation line. The appearance of a two-dimensional secondary vortex in the 
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FIGURE 12. Case 1 ; r = 2.720 m2 s-l, h = 162 mm, Urn = 30.08 m SS'. 

( a )  Row 1; ( b )  row 2;  (c) row 5.  

boundary layer of a flat surface owing to its interaction with a rectilinear vortex has 
been studied numerically by Doligalski & Walker (19841, Chuang & Conlisk (1989), 
and others. They report eruption of the boundary layer in the form of a secondary 
vortex owing to strong viscous-inviscid interaction. 

The flow in the leading-edge region can also be examined in figure 9. On the right- 
hand side of the picture, where the flow moves downward, the separation bubble was 
completely suppressed in the region shown. On the upgoing side of the vortex, a large 
region of mixture accumulation can be seen, owing to the separation bubble. During 
the experiment this bubble was observed to be unsteady, pulsating at low frequency. 
A careful inspection of the flow topology at the leading edge indicates that a saddle 
point was the origin of the secondary separation line, and the reattachment lines 
originate at two nodes, one on each side. These critical points are connected to each 
other, as shown in figure 11, which is a qualitative top-view sketch of the streamline 
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pattern over the entire plate. Mehta & Lim proposed a similar conjectured topology for 
the leading-edge region of the wing used in their experiments. It is comprised of a 
saddle point and only one node as origins of the secondary separation and reattachment 
lines, respectively. They did not report the appearance of a primary reattachment line. 

In summary, when the interaction is weak the flow is essentially invsicid, without any 
major disturbance. As the vortex approaches the plate, its interaction with the plate 
and its boundary layer becomes more and more intense, leading eventually to the 
occurrence of vortex breakdown and second separation over the plate. It should also 
be pointed out that, even for the case of strong interaction, the vertical vortex 
displacement, as it travels over the plate, was very small, except in the region upstream 
of the leading edge. This conclusion is in good agreement with the theoretical result of 
$2, namely, that the vertical vortex displacement is zero. 
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4.4. Pressure distributions 

Figures 12 and 13 show theoretical and experimental results for - C ,  plotted as a 
function of the spanwise coordinate, for several chordwise stations (each station 
corresponding to a row of pressure taps). The theoretical vortex path correction was 
incorporated to the theoretical pressure distributions. This procedure allows both the 
pressure distribution and the lateral vortex displacement to be compared on the same 
graph. 

Figure 12 shows the results for case 1, the weak interaction case. In figure 12(a), the 
theoretical pressure distribution for the first chordwise station, .'c = 0.254, presents 
essentially an anti-symmetric behaviour, in good agreement with the experimental 
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results. Even though this station is very close to the leading-edge bubble observed in 
the oil-surface flow pattern results, the flow in this case is essentially inviscid, without 
any major viscous or nonlinear effects being important. 

In figures 12(b) and 12(c) the experimental and theoretical pressure distributions are 
shown to have the same shape. As the flow moves to the chordwise stations further 
downstream it slowly changes from the anti-symmetric behaviour observed in figure 
12(a)  to a symmetric behaviour. Figure 12(b) shows this transition occurring. It can be 
seen from figures 12(b) and 12(c) that the experimental boundary between these two 
effects occurs downstream of the second row of pressure taps, which is consistent with 
the prediction of the theoretical model (xb  = 1.96). The results for the fifth chordwise 
station shown in figure 12(c) indicate that both the theoretical and experimental 
pressure distributions are symmetric, with the two suction peaks coinciding. However, 
the theoretical distribution is lower than the experimental one in regions away from the 
centreline, which produces a higher pressure variation along the span. In other words, 
the theoretical results predict well the pressure coefficient underneath the vortex, where 
the pressure gradients are steeper. This is the most important region of the flow. 
Nevertheless, away from the centreline region, figure 12 shows that the theoretical 
pressure coefficient deviates from the experimental one by an average value of 0.02. For 
a constant spanwise position, say y = 2, this deviation translates into a growing relative 
error with the chordwise movement downstream. At the first row, the difference is 
about 15 % ; at the second row, it increases to about 22 YO; by the fifth row, it reaches 
approximately 67 %. These relative error magnitudes are due to the differences between 
the experiments and the theoretical model, where the most important is the lack of a 
trailing edge in the model. In the experiments the presence of a trailing edge causes the 
flow to reduce the differences of the pressure variation in the spanwise direction and 
on the top and bottom surfaces as the trailing edge is approached, so that ACp goes 
to zero at the trailing edge (Kutta condition). The lack of a trailing edge in the 
theoretical model precludes the Kutta condition from being satisfied, and, therefore, 
the theoretical pressure coefficient tends asymptotically to a symmetric distribution 
(equation (33)), instead of reaching a symmetric distribution at some chordwise 
station and, then, decreasing in order to satisfy the Kutta condition as the trailing edge 
is approached. Observation of figure 12(c) also shows that the theory predicts well the 
small lateral displacement of the vortex. 

Case 2, the strongest interaction case, is shown in figure 13. The vortex in this case 
is probably in direct contact with the plate’s boundary layer where viscous effect are 
expected to be important, as revealed by the flow-visualization experiments. In this 
case, the experimental results are first plotted separately (figures 13 a-e), and their 
comparison with the theoretical results for the first and fifth rows can be seen in figure 
13(f). Examining figure 13(a),  it can be seen that the experimental pressure 
distribution already has a well-developed suction peak at chordwise station 1, 
indicating that the anti-symmetric effect is dominated by the symmetric one. By station 
2 the pressure distribution is almost entirely symmetric (figure 13b). However, at the 
third chordwise station, a secondary suction peak starts to develop on the right-hand 
side of the main peak, as shown in figure 13 (c). The herring-bone pattern observed in 
the flow visualization experiments support the hypothesis that a secondary vortex was 
formed. The locations of reattachment and separation lines obtained from the oil- 
surface visualization experiment are indicated in figures 13 (c)-l3 ( e ) ,  for comparison 
with the pressure distribution. The small suction peak observed at station 3 increases 
in lateral extent as the flow moves downstream to station 4. By the fifth row of pressure 
taps, the pressure distribution becomes almost flat on the right-hand side of the main 
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peak, which suggests a possible interaction between the primary and the secondary 
vortices and an eventual merging process in progress. Examination of the suction peak 
for each row of pressure taps indicates that the largest decrease in - C,, 0.23, occurs 
between rows 2 and 3. As discussed in $4.2, figure 8(c) shows the occurrence of vortex 
breakdown at approximately a third of the chord length downstream from the leading 
edge, which also falls between rows 2 and 3.  This aids in understanding why the suction 
peak decreases dramatically in this region. The remaining drops in suction peak 
between rows of taps may be attributed to viscous interaction and the proximity of the 
trailing edge. The experimental results for rows 1 and 5 are replotted in figure 13(f) 
together with the theoretical prediction for this case. Because of the very strong 
interaction that takes place the value of - C, is well above the measured values. The 
theoretical vortex path also yields an unrealistically large lateral displacement by the 
fifth station. In summary, the theoretical analysis developed in $2 fails to predict 
accurately the pressure distribution for this case of strong interaction, although it still 
predicts well the shape of the pressure distribution. 

5.  Conclusions 
The problem of the interaction of a streamwise vortex with a lifting surface, as it 

occurs in the flow around a close-coupled canard-wing configuration, was considered. 
A potential flow model was formulated and solved analytically for the flow on the 
surface. The solution shows a square-root singularity at the leading edge and the 
correct asymptotic behaviour as .Y tends to infinity. The pressure distribution 
demonstrates that the vortex causes two effects on the surface: an approximately anti- 
symmetric loading distribution near the leading edge, and a symmetric suction peak 
downstream from the leading edge. The anti-symmetric effect is shown to be 
proportional to the dimensionless vortex strength K, whereas the symmetric effect 
turns out to be proportional to the square of this quantity. Therefore, as the value of 
K increases, the symmetric effect dominates, and the lift force on the surface also 
increases. The lift coefficient per unit chord is shown to approach in as .Y --+ co, which is 
an upper bound. The effect of vortex displacement caused by the surface vorticity field 
was also calculated and it shows that the vortex becomes laterally distorted in order to 
follow a streamline of the flow. 

An experimental apparatus was set up to study this flow. The experimental results 
show an anti-symmetric pressure distribution on the surface near the leading edge, 
which gradually becomes symmetric downstream from it. When the interaction is weak 
all the physical trends observed in the experiments were also captured by the theory. 
The theoretical analysis shows good agreement for - C,, but it starts to deviate from 
the experimental values when the symmetric suction effect is dominant, which occurs 
at chordwise stations far from the leading edge. The vortex trajectory obtained from 
the experiments compared well with the results calculated from the theory, as well as 
the boundary between symmetric and anti-symmetric effects. As the interaction 
becomes strong, or as K increases, viscous effects become important, where vortex 
core/boundary-layer interaction, secondary separation, and vortex breakdown occur. 
Also, the lateral vortex displacement over the surface was observed to be very large, 
whereas the vertical displacement is small. The theoretical model, in this case, 
overestimates the experimental suction peak and does not predict the viscous effects. 
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